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Abstract 
 

We consider the motion of an incompressible viscous fluid, governed 
by the well known Navier-Stokes system of equations, in an exterior 
domain ΩϲRଷ with a smooth boundary ∂Ω = Γ , which is assumed to 
be infinitely differentiable. The open bounded domain itself is assumed 
to possess a cone property [1]. When the rotation of an obstacle is 
taken into account, for a 3D case only the existence of the weak 
solutions has been confirmed in [4]. In this paper, we proceed one step 
further and confirm the uniqueness of that weak solution, using the so-
called “energy method”. 
 
Keywords: viscous flow, rotating obstacle. 

 
 

1. Introduction 
The setting of the problem is 3D viscous, incompressible Laminar flow around a 
smooth impenetrable regular obstruction with a fixed axis of rotation slightly away 
from the centre of the channel of flow. The result of fluid flow with an obstacle is that, 
we end up with a net rotation (at angular velocity ߱ ) in a particular direction. When 
the fluid flow is in contact with the rotating obstacle, the normal component of the 
flow surface velocity, uγ 

0 n=0. All the other surface velocity components are 
tangential to boundary of the rotating obstacle.  

 
 

2. Statement of the Problem 
We look for the unique solution such that, , ),,0[ x )(),( 2  TTHtxu  
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3. Weak formulation 
Our test functions are selected from the following set: 
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In particular, our spaces of interest are )),0[),(2 TL  and )).,0[),(2 TL  through 
the trace theorem, it can be shown that there exist a bijection defined by ,0uu 


   

where )),0[),(2 TLu 
 and [7]. of 41 pageon  9.4;  theoremsee (,)),0[),(2

0 TLu 
  

 
 

4. The energy form of the Statement of the Problem 
 To derive the energy form of the problem, we take the scalar product of 1(a) with the 
velocity filed ݔ)ݑ,  and obtains the following (ݐ
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 (See appendix A.1 below for the original derivation) 
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By the appendix below and introduction above the energy statement will reduce to 
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Simplifying (3), we obtain the following energy statement for the problem: 
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as the energy identity for the problem. For  
 

,0c and since   is bounded, we can deduce the Poincare inequality: 
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(See pp.248-249 of [2]). 
 
In view of (5), we rewrite (4) as follows: 
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Re-writing the inequality (6) in terms of the kinetic energy for the flow, we obtain 
the following first order linear differential inequality: 
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The solution of (7) is given by, 
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Remarks 4.1 
The inequality (8) implies that 0 ,)0(  tCE E  

This, in turn, implies that, 
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Further, we have, 
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 (See (12) of [6]) 
By (12) on page 9 of [5]. 
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By (5) this implies that, 
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By A.1 
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Using (12), we can re-write (11) and obtain, 
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5. The Riesz’s representation for the problem. 
We re-write (13) as follows: 
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Remarks 6.1. 

(a) Until now, through the application of Poincare inequality theorem, our aim 
has been to establish the boundedness of the right hand side of (14). 
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(b)  It is not hard to show that the left hand side of (14) is a bounded sesquilinear 
form. 

(c)  Thus, by the Riesz’s representation theorem [7], there exists a bounded linear 
operator A  such that, 
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Thus,  
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At the interaction between the fluid flow and rotating obstacle, we have 0.0 nu , 
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On applying the Poincare inequality. 
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Now, to prove that (1): we put 
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Proof: since 3R  and   is finite dimensional. By the corollary on page 407 of 

[7], 
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7. Existence and Uniqueness for the Solution to the Problem 
Next, using (13), and in keeping with the requirements by the Leray-Schauder fixed-
point theorem [8], we construct the following form for the problem: 
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follows. results  theand ,
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Main Theorem 7.2: 
There exists a unique fixed-point for (13), which is the solution to (1). 
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In conclusion we say the initial velocity of the fluid is uniformly bounded. The 

fluid will rotate with the obstacle and decreases to zero as time goes to infinity. 
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APPENDIX 
A.1: Energy form of the problem is given by, 
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Using integration by part and divergence theorem, we have, 
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From the no-slip condition and 1(c) above, the equation collapse to zero. 
 

 



On The 3D Incompressible Navier-stokes Flows Around a Rotating  31 














dxuudsunu

dxuuc

).(
2

)( .                          

)()u,u( )(

00

)(L2









 

 
Again from no-slip condition, the first part of the equation is zero, hence 
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From the no-slip condition and 1(c) above, the equation collapse to zero. 
 

udxuudsunu

uuuuuxe





,).()..(                            

),.(),).(( )(

000

0













 
 





 

 
From the no-slip condition and 1(c) above, the equation collapse to zero. Now the 

energy form of the problem becomes, 
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